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ABSTRACT

The dynamic characteristics of an isoperibol solution calorimeter with electrical
heating are discussed on a theoretical basis.

The design requirements of a solution calorimeter are briefly reviewed. A
calorimeter which satisfies these requirements was constructed and is described here.
The dynamics of solution heating by an electrical heater are mathematically developed
and computer generated heating curves are compared to experimental curves.

INTRODUCTION

Traditionally, calorimeters have been divided into adiabatic and isothermal
(isoperibol) types with the distinction being related to the manner of temperature
control of the environment of the calorimeter. The preferred method for maintaining
a uniform temperature environment around the calorimeter involves the so-called
“submarine™ technique in which the calorimeter cell is submerged in a tank con-
taining a thermostated liquid with mechanical stirring. A second method used only
for isothermal calorimetry employs a thick insulating jacket, usually of a plastic
foam, around the cell. White!, in his classic text on calorimetry, treated in detail
many other aspects of solution calorimetry. A recent review by Churney et al.2
further defined the requirements of solution calorimetry. In these references, transieat
behavior and the dynamics of the change in bulk solution temperature during and
immediately after the main period of heating are ignored. Ignorance of the response
dynamics can lead to erroneous application of solution calorimetry especially in
the study of reaction kinetics. Here, we describe a calorimeter which is sufficiently
compact for use in 2 fume hood, is operable with readily available temperature
controllers, and is sufficiently stable to permit 2-6 parts-per-thousand precision for
measurement of total energy change in the range of 5-15 cal. A theoretical examina-

* Present addres Corporate Research, UOP Inc., Des Plaines, Ill- 60016, (U,S.A.) Author to whom
correspondence should be sent.
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tion of the dynamic response of the solution bulk temperature to electrical heating is
given using linear methods to obtain a useful mathematical solution.

Solution calorimetry is a diversified area of research and standardization of
equipment design has not yet been attained®. This resvits, no doubt, from differing
requirements and opinions of the workers involved. Sunner and Wadsa* discussed the
general requirements of isoperibol calorimeters. Christeasen et al.® elaborated on
these requirements and a commercial unit was constructed according to their design®.
Both groups of workers decided early that a submarine isoperibol calorimeter is
best suited for solution calorimetry of short duration (< 1 h). Sunner and Wadso
came to the correct conclusion that the design of the calorimeter lid has a great
afiect on the dynamic calorimetric behavior. Christensen et al.” apparently also
experienced difficulty in obtaining a uniform temperature field above the solution
as witnessed by the lid modification proposed. Two factors are of special importance
in lid design: the means for attaming a uniform temperature field across the lid and
the method by which mounting probes can be suspended into the calorimeter vessel
so that heat conduction along the probes is minimized. If materials with low thermal
conductivity are used for the entire calorimeter lid, large radial temperature gradients
can develop even when the lid is submerged with the cell in a constant temperature
bath. The quantity of heat flowing into or out of the solution in the cell via the probes
depends on the type of material in contact with the solution and the total submerged
area. The volume of the submerged portions of the probes will also affect the dynamic
response of the solution temperature because of interference with convective heat
transport in the solution. A very low heat-loss modulus was reported by Christensen
ct al.® which undoubtedly resulted from their use of Teflon tubing around probes
into the solution and their efforts to miniaturize the probes.

We suggest two requirements for the design of solution calorimeters in addition
to the five given by Sunner and Wadsa*: (1) Mixing of the solution in the calorimeter
should be uniformly turbulent throughout the bulk; (2) bulk solution evaporation
and uptake of gases from the vapor space above the solution should be minimized.

Popular stirring devices are propellers, magnetic stirring bars, and vibrating
rods. Problems common to the first two types are vortex formation and spraying of
the solution onto the calorimeter walls and lid at high stirring speeds. Highly volatile
or toxic materials must be handled in 2 completely closed system for which magnetic
stirring is the only option. Stirring by a smooth rotating disk has not been discussed
although it was apparently used by Johansson®. It is our experience that a rotating
disk provides rapid solution stirring, and a uniform flow pattern around a thermistor
placed just below the plane of the disk. We have found that positioning the disk at
a depth of %; I, provides adequate stirring with o vortex formation, minimal gas
uptake, and no spraying. It is a common misconception that a great amount of visible
surface disruption is indicative of rapid solution n:ixing. The movement of a large
volume of fluid is aiso not equivalent to efficient mixing. Needed is uniform turbulent
flow such that eddies are small and, hence, thermal and mass diffusion can be effective
for eliminating spatial discontinuitics in temperature and concentration. As expected,
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a compromise must be reached between efficient stirring and the maximum heat of
stirring which can be tolerated.

Concurrent with mixing is the interaction of the bulk solution in the calori-
meter cell with the vapor space above the solution. White! stressed that the calori-
meter lid should be slightly warmer than the solution in the calorimeter cell to
eliminate condensation of solvent vapors. Minimization of the volume of vapor space
is also important especially for highly volatile solvents. The elimination of CO,
adsorption by the solution has long beer recognized as a difficult problem. Frequently,
excess base is added to decrease the effect when pH change is not critical. It is our
experience from electroanalytical studies with a rotating disc electrode that exclusion
of O, is more difficult in cylindrical cells with flat bottoms rather than spherical cells.
This can be understood from a study of the fluid-flow patterns in the two cell shapes
and the consequential degree of disruption of the solution surface. Cells used in this
work had round bottoms.

THEORETICAL

Our consideration proceeds from the work of Polaczek and Lisicki®. Their
key simplifying assumption was the combining of heat capacity and heat transfer
characteristics of the probes with those of the cell wall. In practice, the surface area
of the probes in contact with the bulk solution may nearly equal the area of the cell
wall but the heat capacity of the probes cannot be determined independent of the
cell wall in the single apparatus. In this work, the separate heat transfer coefficients
of the probes and wall are used with the combined heat capacity to calculate the time
constant for the cell wall. A second new consideration here is that the time constant
of mixing, 1, is the value determined according to Brodkey'® at r, the distance from
the cell’s vertical axis to the electrical heater. The bulk solution temperature, T},
is usually considered to be uniform throughout the solution except in the boundary
layer of the electrical heater. The boundary layer temperature, T, is equal to T}
before heating but is greater than T, during heating. The third new consideration is
a correction for spatial inhomogeneity of 7, within the calorimeter cell. This yields
the “excess’” temperature in the region of the temperature sensor.

General equation
The time response of the bulk solution temperature can be derived from the
heat flux balance given by eqn (1)
dT, dT, ATy, — T)

hA(T, — Ty = C-—a;— + Cb-a'i‘- + Cb-——a——— ¢3)

The combined heat capacity of the ccll wall and stems is C, and

C. ST = AT, ~ T2 @
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A time constant for the wall is defined as

Consideration of heat flux at the heater yields
a0, _ , _ d7,
< =B =hA(h - L) + G~ @
A time constant for the heater is defined as
G 1 '
Ty, = withZ, = —
B hyA, 2 Tn 6

The temperature difference T, — T, is expressed in terms of the time constant for
mixing

dT; :
Tﬂ*nztn d:zn‘h (6)

With3 -——'—L

Combination of the Laplacian transforms of eqns (1), (2) and (4) yields eqgn (7)

[tz oo - e+ [g] mo
[ 1] T = BT - TOD
ChAs Cus
[ h.A,.] T + € ez — 1 mO
+ Gl R — STO) — TiO] @

An initial approximation is made that the T;,(s) term is negligible. |
Solving eqn (7) for 7,(s) yields egn (8).
Z1Z5 [ (s +Z%,) ] .
G LsGs + ZXS* +(Zy + Z3)s + Z,Z,(1 + C.C)

Tfs) =

G + (Zy, + Z)s + Z,27,)
S(s* + (Z; + Z5)5 + Z,Zy(1 + C.jCy)

(0. — 0400 + | | no

CZyZ, 1 )
* C, [s(sz +(Zy + Z3)s + Z,Z(1 + c_]c,,))] .o
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s+ Z)) (0
M [s(sz +(Zy + Z3)s + Z,Z5(1 + c.ic..»] 0

4

CoZ,Z, [ (Z, +5)

Cs AZ, + sHs* + (Zy + 2Z5)s + Z,Z(1 + C,[Cy))
The total generated heat Is
On = Pyt ©)
add the Laplacian transform of @, is

0u(s) = P.Js* (10)

| 5o ®

Main period
The in:tial conditions for the main period of heating are

t=0:0,=0
L =Tp=Ty=0
dT,jdt =0
T.> T

0<1Sfm:Q§=Pz,f
T, > Tw>T,
I,#¥T

At ¢ = 0, the values of T, for the two solutions in the differential calorimetric system
are equal. For all values 7 > O, the equality of T}, values no longer exists. The heat
of stirring, 7,,, and electrical heating of the solution by the thermistor, 7,,, are
compensated for by use of a differential system. The remaining heat source is 7,
which results because 7T, > T,. Differences in heat exchange by the calorimeter’s
cells with the environment are compensated by use of trickle heaters initially adjusted
whenr < 0.
From the initial conditions, eqn (8) is written

Z,Z, [ (s +2Z)) ] P,
Cp Ls*{(s + ZXs* + (21 + Z3)s + Z,Z4(1 + C.iCy))}
Z,z2,C,, [ 1
+ 2
Co sf{s® +(Z, + Z3)s + Z,Z5(1 + C,/Cy)}
The denominators of the cocfficicnts of P, and 7,.(0) are characteristic of a

second-order differential equation {s* + (Z; + Z3)s + Z;Z4(1 + C./C,)} typically
encountered for RLC circuits. The roots of the equation are

Ts) =

] T.(0) (11)

1/2 .

c— — (Ex_izr_z_s) + [(?%_72)2 ~ Z:Zs(1 + c‘.'/ch)] S 12
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- Depending on thc values of Z,, Z5 and C,/C;, the mots may be rwl or complcx.
“Three cases rcsnlt with three corresponding expressions for eqn (12)
©. . Casel: Thc condman of undcrdampmg cnsts whcn : o

(5—*2”—5-) <zz0+ cicy
The cocfficient of Py can be factored as | :
K, K, K, K ‘ '
s TET D TG e B T Gra—B). 49
where
j=—1
_Zy + Z,
—hts
23172
B = [z,z,a + CJCy) — (ﬂ_‘g—z:‘:) ]
It is shown in ref. 11 that
K, = ¢
17 Cy + C, )
Z(Z, — Z
Kz —_— 5 N 3( 1 2) (16)
ZJIC(Z: — ZAZ, + Z3)) + Z,Z:(C, + C)]
K, = rexp{if,} | a7n
K, = riexp{— j6;} - (18)
where

r o= @) + (1"
_ G2 + (B* — X2, — Zp)]

a .
Z\Z3Y(Cy + o i
by — Z,G [ $ + 20672, — Z,) — 4]
T ZZWCo+ G

8 = arcsin {byirs}



b =Z,Z; — (Zy + Z)x + Z1Z5(1 + Cof/Cy)

¥y =2z,[Z; — ZAZ, + Z3) + ZyZ5(1 + C,jiCy)]1B
 The coefficient of the 7,(0) term in eqn (11) is factored as
Ks KG K7
s Ts5ta+B sta—F
It is shown in ref. 11 that

_GC
Cp + Co

Ks =

K¢ = roexp{if,}
K, = rpexp{— j0,}
where

r: = [(ap)” + (621"

ay = Cw
2T 2AC.+ C)
bo — — aC,
z _ZB(C.,+C.)

0, = arcs.: (byfr;)
Finally, egn (11) for T, (s) becomes

wo- [ (e + (52)

( 242y — Z) )
Z,[CAZE — (Z, + Z3)Z: + Z,Z,(1 + C.|CY)]

ryexp{if.} ryexp{— 6.}
+ [(s'+a+zﬂj)+ G+ra—f) ]P"

reexp{if,} raexp{— j6,}
[(s2+a+m+ G+a—B) ] O

,'Ihe inverse transform of eqn (23)is ‘
Tb () Pyt 3 o P,,Z;(Zl — Zy)exp{— Zzt}

(Cy + C-) Z,1(Z3 - ZA2Z, + Z)NCo + Z,Z5(Cy + _C,-)] -
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19)

(20)

(21
(22)

(23)
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 + Pnyfexp{ifJexp{— (= + fili}
~ + exp{— 6, }exp{— (@ — Ar}]

+ [0+ = ($B) ]| meptidessl— -+ 0

+ exp{— i0,}exp{ — (= + BP] 249)
The value d7,/dz at ¢ = O in eqn (24) is the background heating rate, 7o,
Evaluating the exponential terms in j,

4 + Z3(Zl - szxp{—— Zz‘}
(Co+ Cl)  Zo[(Z3 — ZAZ, + Z5))Cp + Z,Zo(Cyy, + C)]

T,;(t) = Py [

+ 2 ryexp{— at}cos{fr — 9,}]

2 expf— ar}cos{pt — 0
1
Case II: The condition for critical damping is
Z, + Z,\? ,
(¢TJ) =Z;Zy(1 + GiCy) (26)

and a single root for s in the second-order differential equation is obtained. Equation
(11) can be written

Z,Z, [ G+ Zy) ] P,

hts) = C, s¥(s + ZXs + o)

Z,Z,C. 1 17w
+ 2% [s(s“),] -0 | @n

The coefficient of P, in eqn (11) is factored as

K; + K9 + KlO s Kll » (28)
s s+2Z, (+a GG+a)

where

@)



Z(Z: — Zy)
R = CZ(x — Z,)°
K, — 222Z1 — @)
(2, — D)

K,, = 22Zs [ar’(zz —a) — (Z; — 2)32" — 212,)]

Ce ‘14(22 - a)z
The coefficient of 7.(0) in eqn (11) is factored as
K!Z + K13 = + Kl‘
s (s + a) (s +a
where
- Z,Z.C
K a—— 1<~3%“~w
12 o2C,
-— ZIZ3C'
Kl3 - @ Ch
. — Z:Z,C,,
Kiyg= ——52>~=
Gy

The inverse transform of eqn (11) for the critically damped system is

Ph [21231 + 23(22 - Zlkxp{-" Zzz} »

L = Cy 'S Zy(x — Zy)?

Z,Z(Z; — a)texpf{— at}]
(Z, — a)

C, ' @ o

Case III: The case of an overdamped system occurs when

,
(_z_l_;-__z_,_) > Z,Zs(1 + Co/Cy)

The coefficient of P,, is factored as

K;s + . KIG + Kl'l + sz -
s s+2;) (s+a+o0) (s+a—o)
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(30)

(€19

32)

(33)

349)

(35)

(36)

NED)

e

G9).
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’ The constants are evaluated
' z,z, g
K“"' Cflx +alx—a) (40)
Ky = =——— 23(2‘,: Z2) — (41)
= C,,Zz(a+a--£1)(a-a—-zz) s
. — 2,22, — a — o) : @2
17 = 26Cy(x + 0)(Z; — @ — o)
- - 23242y — a + 0)
= 43
1 2Ce(c — DNZ; — a + 0) “3)
where
r IZ + "3‘ 2 1112
o= [|ZF2) -zazt +Clic)| )
The coefficient of T, (0) is factored
Klg‘ + Klo Kll (44b)
s S+a+4+0) (+x—0o)
where
— ZIZSCw
Kio = Cy(@ + oXa — o) ~ “3)
. ZZ,C, :
KZO = ZGCL.(Q i O') (46)
Ky, = :—z.:-l-ég:—r “n
26C(c — a) 7
The inverse transform of eqn (11) is
T( "1} == Pll r le3‘ e Z3(zl - zz)exP - ZZ‘
N Colla+oXz—0) Zx+ 0 — ZXax— o — Z5)
> > (> [ Pl p—y 4 £ 3 _n2)
__ Lzla\Ly — & — ORRP\— \& + 0jiy
20(z + 0)'(Z; — x — %)
Z,Z(Z, — @ + 6)exp{— (x — a)t}'l
+ 25 — 2T '
Ead U "'U-)\l-nz—u'rul
g [ Z.C. + Z,C_exp{— (x + o)}
TG levoe—a 2@—0)
Z;C.expi{— (z — o)t} ]
R ) - 48
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Anterior period

The anterior period begins at the time in the main pericd for power cut off,
I = [, Time at cut off is designated r = O for mathematical consideration of the
anterior period. The general equation applies with the recognition that dQ,/dr = 0
whentz >0

5* + (Zy + Z3)s + Z,Z5)
2 Tb(o)
s(s* + (Z, + Z3)s + Z,Z4(1 + C,[Cy))

CoZyZ, [ 1 ]
+ T.(0
Cp (s + (Z; + Z3)s + Z,Z5(1 + C./Cy) -0

s+ Z,) .
* [s(sz +(Zy + Z)s + Z,Z,(1 + c./c.,»] 1.0

e = |

|r® @9

+ CpZ,25 [ s+ Z,)
Cy (Zy + SUs™ + (Zy + Z3)s + Z,Z5(1 + C.ICY) .
The denominator of each term contains the second-order differential equation con-
sidered above as a function of the system damping.
Case I: When the system is in an underdamped condition the coefficient of
7,(0) can be written as

L, L, Ls L, 5
s +s+Zz+s+a+ﬁj+s+z—Bj 0
where

=& ‘
L=c5¢ | ©1)

CoZ:(Z, — Z
L, = . wl3(Z2 2 1) : i (52)
Cb(ZZ - Zz(zl + 23) + LIZ3(1 b C..ch))

_ — Cyryexp{if,} .
Ly = C, + C, (53)
L, = — Chrlcxp{—jol} (54)

e C, + C., .

and «, B, r; and 0, were defined previously.
- The cocfiicient of the 7,(0) term can be written as

Ls' LG L-’ ’ .
s +s+¢z+ﬂj+'s+a—ﬂj (55)
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Itmbe,shqwnth_at:
N - S
LS - Cb + C'

LG = ’3@&83} ”

L;=r 3@{"’ 05}

rs = [(as)? + (65?12

where
o = = Gl2:25 — @ — 51
3 2Z,Z5(Cy, + CJ)
by = — G228 + & — af® — (& + NZy + Z») + aZ,Z5]

2Z,Z:5(Cp + C2)

03 = arc sin b3Ir3

The coefficient of the T_(0) term can be written as

Ly Lo Lio
s +s+a+ﬂj+s+a——ﬂj
It can be shown that

C. |

L =cxc
Ly = 4°xp{j8¢}
Lo =T, 4“?{"‘ j84}

where v
re = [@)* + (b1

= —C
Z(Cb + C.)

ag

b —aC.
T AGFCOP

0, = arc sin{bd?‘}

(56)

(57
(58)

(59)

(60)

(61)

(62)

(63)



The coefficient of the 7[(0) term can be written as
‘Lyy sz + Lu
s s4+a+ph s+a-—pf
It can be shown that

R - S

Zy(Gy + Cy)
L,z = — rsexp{j0s}
Lys = — rsexp{— j0s}
where

rs = [(as)* + (b5)"1"*

ay = P

* T 2ZG,+ C)

p. _ ColaZ, — a® — §7)
.=

2Z.Z3B(Cy, + C,)

0s = arcsin{bsjrs}
Equation (49) now becomes

03}

T(s) = [( o )+ riexp{ifs} + raexp{—

(s+ax+ Bp (s +o—

L Cb+C-

+ ( C. )(l) + rsexp{if} + rqexp{— jO,}

+a+p) (s+a—f
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(65)

(66)
(67)

+ -(za(cb + C.)) ( ) -G P sﬂ}D - ;Ze:pi_—j&}
AR E—

Curaexpiif}  Curjexp{— j6.}

-(C,,+C.)[s+a+ﬁ_u (Co + CG +a— B

| no

Cb(zi —2ZAZy +Z3)+ Z,Z,(1 + C.JC)s + Z,)

(63)

The initial conditions for the anterior period corrspond to. the oondmons at
£ = I, for the main period. Provided the mam penod is of sufﬁcxent length the heater

is at a steady-state temperature
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(“‘T'-)‘ =T =0

\Ndt Jooo,
Hence from eqns (4) and (6)
B0 = i 4 To(0) = 22+ ey oy

hy A, hA, C,+ C,
The value of 7,(0) for the anterior period is determined by P, 7, and the heat
capacity terms, Cp and C,, ’
. P, blco . 7
T(0) = WCb e | : v (69)
It follows that
_ P,
o=z 3 ~ 0
Inequality of T2(0) and T /(0) must be accounted for because at { = 1, T.(0) #
T,(0). The ba:;kground correction term is called v, and :

dT(0) _ dTi0) _
de —  dt Your

B s W
Tore T
From eqn (2)

1 (dT®) .0 .. -
7 (52) - 50 -ro a2)

and

(71)

TA0) = Ty(0) — 21-‘- (i%“ﬂ)

_ bem _ 1 ( Pb __ ) - 73
_’Cb‘*'cvzl Cb+c' ka‘ ()

The inverse transform of eqh (68) is

10 = | (2e) + 2reexet— o} cos{ﬂ:(—&— 03] [—C—_-;?-;‘%—;] N

[( %) + et eotr—00] [Bi

_ ~Pla + 7“:] )
GG+ C)  Z, )




C

Py
* |zl — et mheatoe - 03] [
+ [( Gy ) + CvZ(Z, — Z,)exp{— Z,t}
Co + G CZ: — ZAZ, + Z3) + Z,Z,(1 + C.[C)

+ P, htco

__ 2Cyraexpf{— at} cos{ft — 02}] [ P,
{(Co+C.) ,

Case I1: For critical system damping,

(_?J_‘_zf_@_)z = Z,Z(1 + C.iCy)
and eqn (49) is written
T =&t sé'i‘sa;; 2 1.0
* Z,izC. [s(s‘ -:- a)z] O
+ [:?Zjl%] 10 + zzf::Cb [s(s fzjxfi a)z] o

The coefficient of T,,(0) can be factored as

Ll4 + LIS + LIG 5 + Ll'!
s s+Zy, (+x) s+«
where
= BZ:G,
o*C,
L. 22— 2)G,
¥ @ - z2)G,
e @ — Z3)Cy
L,, = 222G [m(a = Z3) — (2, — a)Z; — Za)]
: Gy L o(Z, — a)? .

T_he coefficient of T,(0) can be written as

hdy TG v Gyt ‘“"""]
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(74

(75)

(76)

an

(78)
(79)
(30)

(81)



Lis | | I;zo'
s +(s+a)z+(S+‘a)

where

Z,Z
Lta'— 133

—(Z, — aXZ — a)
L[9= (l x3

L, =G+ 2 =2~ 2~ a2 —a)
0 =

The coefficient of the 7;(0) term can be written

Ly , La L3
+ +
s +a)P (+ad)

where
=2

L, -2
Ly = —*

The coefficient of T_(0) can be written

Lae . Las | L
s G+ (+a

where
_ Zi25C,
L. = 225
I ZIZJC'
IQS - a Cb
L26 — ZIZJC' ’

&G

82

(83)

(34)

(85)

(86)

ty)

(88)

(89)

(90)

1Y)

©2)

- (93)
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Equation (49) can now be written

[ Z,Z,C. Z,\Z,C, Z,Z,C, ]
+ — + T.(0
L &®C,s a Cfs + a@)* 2*C(s + @) -0
[ Z, (x— Z)) Z, ] ‘
e T,(0
+L¢zzs as + a)* (s + ) +(0)
+ [ Z,Z,C,, + Z\(Z, — Z,)Cy + Z,Z(Z, — a)Cy,
2 2 " 2
L a"Cys (x—2Z)'C(s +Z;) afa— Z,)Cy(s + a)

2,2, (a(a — Z) — (Z, — aXZ, — 22) ]
TG+ 2z, — o) ) O

94)

Taking the inverse transform of eqn (94)

Z,Z, (Z,— afZ; — a)texp{— a1}
& @

nw = |

2

. (a{Zl + Z5 — 2!!); (Zy — afZ; — a)) exp{— ﬂ}] .

[ Pyt ] + [Z,ZBC,, _ Z,ZiC, exp{— at}

Cy + Cu 2C, aCy
+ Z,Z3C,exp{— a‘}] [ Pbtco — Pb + kag}
a>C, C, +C. ZJ(C,+C,) Z,

+ [i; + (@ — Z,)z:xp{-_—- at} _zZ exig— az}] [Cb :’:,C']

+ [ Z,Z,C, + Z(Z, - Z,)C, exp{-— Zzl}
- 2 2
2*C, (@ — Z))°G,

ZzZ;(Zl — G)Ch‘ exp{-— at} .
+ da — Zz)Cb ] + chZZZ3

((a’ — az,) — (Z; — aXZ, — 2)
«*(Z, — a)’C,

)?*pf"““}]? i
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P, . P, :
[h A + G, + C. t..n] 95)

Case III: For the case of over damping ‘thcycoefﬁcicnt of T,,(0) can be written

L, Ly Lao Lo |
s7 +(s+%z)-r(s+a+a)+(s+a-——c) ‘ )

where

_ ZZsG |
Ly = (« + a‘)(cz —ha)C,, _ ©n

3 Z(Z, — Z,)Cy ’
Las = @i o= ZXa — 5 = Z)C, ©8)

_ GZZ(Z, —a~ ) ~
L2 = C20(x +3 oXZ, — a — o) &9

_ —GZZ(Z —a+0)
L30 = 5Coota — oXZ: —a + 0) (100)

The coefficient of T, (0) can be written as

L, L, L,
sl +(s+af|-a)+(s+a3—a) (101

(@ + o)a — o)

where
Zz,Z .
Ls = (x+ a;(as— o) (102)
_(Zy, —a—oZy —a— o) .
T 20(x + o) 103)
~(Z,—¢+6XZ — & + 06) |
1‘33 = 20_(0_7_31) (104)
The coefiicient of T,(0) can be written
L34 Lss Lis
s +(s+a+o')+(s+a——o') : ‘(105)
where | |
(106)



Z, —a—oc

Ls = 2da+ o
Lse = 20(0 — @
The coefficient of T_(0) can be written
Ly, Ls Ly
s (s+ax+o0) (s+a—o0)
where
. Z,Z.C,
La7 = (@ + oXa — 0)C,
—_ ZIZ3C'
Lis = 20(a + 6)C,
L —_ zlz3C'
39 7 26(c — a)Cy
Equation (49) is now written
_ 'Z,Z3 (Z, —x—~ 25 —a— o)
L) = [s(az+o-)(¢z—a)+ %6(z © oXs + = £ o)

(Z — a + oXZ a + o)
lIlt:'(c;’—a:)(s—:cx G) ]Tb(o)

ZIZ3C- Z Z3C-'
+ + L
{2+ ofx — 6)Cy  20C[(x + oXs + x + o)

Z,Z,C.,
20C (6 — a)s + a — 0')] LO

+

+[ z, Z, —a—o
S(x + oax — o) Za(c:+a')(s+a+o')

Z, -« to Z,Z:Cy

Za(a' —a)s + a — )] T0) + [s(az + oXz — 0)C,

C,,Z;,(Zz —Zy)
Cb(¢z+a'—Zz)(¢z-—a'-Zz)(s +Zz)
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(107)

(108)
(109)
(110)

(111)

(112)
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CZ,Z(Z, —a — o)
ZC,,a(¢+a)(Zz —a—oXs+ax+o0o)

CoZ2ZA(Z; — & + 0)
T 2Cyo(x — .:)(22z —lcr. T o)s +a— ] T(0) (113)

The inverse transform of Eqn (113) is

_ Z,Z (Z, — @« — 6XZ3 — a — o) exp{— (a + o)t}
() = [(zz + o;(;- o) + 20(a + 0)

(Z; — a + 6XZ3 — « + o) expf— (z — a)t}] [ Pyt ]
+ Zolo — @) C. + C.

+ [ Z,2,C, 22, —-2,)C, exP{— Zzt}
@+oa—o)Cy f(x+ o — Z a — a — Z,3)Cy

" Z.Z(Z, — @ — 0)C, exp{— (a + o)1}
20(x + 0XZ; — = — 9)Cy

26(x — 6XZ; — a + 0)Cy hpAy

Py, Z,2,C,
t e v “"] + [(a-l-a;(tz— C,
+ Z1ZsCaexpf— (@ + ) | Z:Z3Coexpf{— (= — o)t}]

20(x + 0)C,, 20(c — )G,
[ Pyt _ Py, + Tbkg]

Co+C. Z(G,+C)) z,
3 [ z, + (Z, — x — o)exp{— (z + o)t}

(z+ o)x — o) 26(x + o)
+(Z‘ — @ + o)exp{— (@ — o)1} [ Py

26(c — a) G +C, (1149)

Implementation of calculations

Values of the time constants 1., 7., and r_, must be acmrately computed to
account for the various mechanisms of heat conduction and convection occurring
at the heater, disc stirrer, and cell wall. The geometry ofthehm,tcnscyhndnmlwnth
a hemispherical tip. Terms in preceding equations for z,, '
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Z; = 1, = hy4,]C,

which do not account for differing rates of heat transport over the surface of the
heater are replaced by

hyA 2
Z, =Bk [ B ] 11
2 Ch hhsrh ( 5)

The value of A, is calculated by the equation of Scadron and Warshawsky!? given
below.

oz [ (2) e52] * [20]" 4]

The value of C, was calculated assuming the metal-film resistor to be!'® essentially
Alzo 3- 111!15,

Cyp = M., + MeoCoy

The equivalent thermal conductivity of the electrical heater is given by
yi )'Cn;'e

M ;'Cu)'e + anl T h]‘:;‘r + xc,hl r h;’Cn)‘r

Heat gain by stem conduction of the probes is computed with the conductio
of the cell wall :

Tw = Cw(llh-A' + llhstemAsltm)

All solution probes are considered to be of equal size and composition and to be
positioned at identical distances from the center of the cell. The calculation of 4,
must account for stirring effects of the rotating shaft and the disc of the stirrer. This
is done by using weighting factors

r;h 213 r 2/3
— —s -
- [———,ﬂ = ,s] e, suart + [,w c ,,] Brceon e

-
Ay ==

The values of A,y spars 2nd A, 4:.c are calculated by the equation of Zukauskas'*
given here for A, n_ spare-

Busemmstare = 0.135 [( v ) D2 e ]0'63,[ "“c"]m6 [ b ] 17)

Unax b 2 Tstem

Equation (117)is particularly suited for cylinders with diameters greater than 0.25 in,
whereas the equation of Scadron and Warshawsky!? is applicable to cylinders of
smaller diameter. The value of A, is calculated from the equation of Nagata et al.'®
for an unbaffled vessel containing a cooling coil

h, = 0.128 [%.3..7_';&]0'“1 [Vbcb]‘us [ r, ]-o.zs [ I ]0-15-

Vi ;'b re T
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[=] (2] 118)

Efficient solution mixing in the cell results from uniform turbulent flow. The
time constant of mixing, 7, used for derivations described here was defined specifi-
cally in terms of the rate of heat transport across the thermal boundary layer of the
heater (see eqn (6)). The surface of the rotating disc and, to a lesser extent, the
surface of the shaft provide the stirring. Stirring by the disc results when fluid is
pumped from the fluid bulk in an axial direction to the surface of the disc from whence
it flows radiatly over the surfaces of the probes. Stirring by the shaft also results
from radial and angular fluid flow. The net value of 1, is taken to be the harmonic
mean of individual time constants computed for stirring by the disc and by the shaft.

[llfm.dise + lltm.sh:ll] -t
T = 2

The values of 7,_ 45, a0nd T, s1ar Were calculated from the fluid velocity at the position
of the heater by application of equations derived for turbulent mixing in pipe flow
described by Brodkey!'®. The choice of analogy between mixing at the heater and
that for pipe flow was made of necessity since rigorous treatment of turbulent mixing
to our knowledge has been accomplished only for pipe flow. The radial fluid velocity
at the rim of the disc is corrected by the Pai power series to give the velocity at the
position of the electrical heater. The radical assumption is then made that this velocity
is analogous to the mainstream velocity of the pipe flow trcated by Brodkey. The
value of T, weakly reflects variation of the Schmidt rumber. Although the Schmidt
number for 0.01 M electrolyte solutions is more than 3 x that for water (1000 vs.
300), T, differs by only about 10%;.

A spatial temperature function was derived to describe inhomogeneities of the
bulk solution temperature which were disregarded in our initial discussion. The
electrical heater is sufficiently small compared to the total volume of the calorimeter
to be considered a point source of heat. Depending on the location of the temperature
sensor relative to the electrical heater, the temperature sensor may be in a region of
“excess” or “deficient” temperature. Considering £ to be the angle between the center
point of the electrical heater and the longitudinal axis of the calorimeter and ¥ to be
the angle between the electrical heater and the temperature sensor, it can be shown
that there is a temperature difference function of the following form.

L
Tos = Tomre = 314700 1 (5

[

) (2=) costoapsinaay

Ta

where I, /r_is considered to be the cell asymmetry factor and o, the shielding parameter
which describes the shielding of the temperature sensor by the stirrer and is given by

U [ 7P ]
T [(na"3
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EXPERIMENTAL

Apparatus

A photograph of a new compact isoperibol calorimeter of the submarine type
with variable heat shields above and around the Dewar cells 1s shown in Fig. 1. A
photograph of the calorimeter probes is shown in Fig. 2. The design avoids the
disadvantage of leaky seals which commonly plague completely submerged calori-
meters by utilizing a lid with its own system of enclosed chambers for circulation of
a thermostated liquid. The temperature of the lid can be maintained at a value
independent of the Dewar cells by use of a2 separate thermostatic bath and circulation
pump. The cell is unique in that no gaskets, flanges, or other parts need to be re-
assembled each time the calorimeter is used. Instead, the calorimeier cells are raised
or lowered on a laboratory jack and can be moved to one side to facilitate addition
of solution by pipeting or removal by aspiration. All manipulations including cleaning
are accomplished quickly with minimal chance for component damage.

Two Aladdin 10-oz Dewar flasks (No. 020A) are mounted in four 1-1 poly-
ethylene bottles by means of the rubber rings and plastic base plates supplied with
the containers for use as replacement fillers for vacuum bottles. A 24-ft. coil of 0.25-in.
copper tubing for circulation of thermostated fluid sits on a cork ring timmed to fit
the bottom of the polyethylene bottle. There is approximately 0.5-in. clearance on
each side of the coil. The Dewar cells are held in place by Plexiglas rings which also
enclose the top of the polyethylene bottles. Mineral oil is placed in the bottles as a
medium for heat transfer between the Dewar cell and the copper tubing. Circulating
thermostated water is provided by a Forma Temp Jr. bath and circulator (No. 2095-2)

Fig. 1. Photograph of calorimeter.
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Fig. 2. Photograph of calorimeter probes.
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Fig. 3. Diagram of calorimeter head.
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which provides temperature control to +0.02°C. The temperature fluctuations of
water from the Forma Temp Jr. were satisfactorily damped by passing the water
through a 50-ft. coil of 0.38-in. polyethylene tubing placed in a 12-1 mineral oil bath.
The polyethylene bottles sit in laminated Styrofoam cases in a plywood box.

A detailed scale drawing of the calorimeter head is given in Fig. 3. A massive
aluminum block with channels cut for the flow of thermostating fluid provides a
large heat sink above and beyond the edges of the calorimeter cells. A thin coat of
Dow Corning silicone rubber sealant is applied to prevent leakage when the large
discs and main plate were bolted together. The tops of the calorimeter cells are ground
flat so that a small amount of sealant grease applied to the Teflon cell covers provides
a nearly vapor-tight seal. The calorimeter head is covered by a l-in. thickness of
Styrofoam on the sides and bottom. The top and sides of the head are covered addi-
tionally with plywood. The aluminum discs projecting below the block are covered
with epoxy. Tygon tubing surrounds the four bolts used to connect the head and the
mounting frame. When the calorimeter box is raised into position below the head,
there are a series of interlocking seals made at the contact of the box and head.

Careful inspection of Fig. 3 reveals that the upper bearings of the calorimeter
stirrers are mounted in aluminum blocks thermally separated from the main head
block. The stirrers are driven by a single pulley with bearings mounted on the main
head block and turned by a belt connected to a step pulley on a T-Line motor (No.
105) from Talboys Enginecring Corp.

Titrant injection is made from 2.000-ml micrometer syringes driven by a vari-
able-speed, reversible motor modified from the design as described by Ebell'®. The
flow-rates can be adjusted in the range 0—-1 ml/min. An electrical braking mechanism
allows exact shut-off at any point. Titrant solutions are brought to constant tempera-
ture by passage through a thermostated condenser tube. A 1060-KQ NTC thermistor
mounted in the condenser jacket is used for monitoring of titrant temperature. The
condensers are wrapped in glass wool and plastic tape for further thermal protection.
Injection of titrant into the calorimeter cells is made through 6 mm OD x 0.5 mm ID
pyrex capillaries tapered sharply at the point of injection.

Procedures

Since no method is described in the literature for selection of matched Dewar
cells on the basis of thermal characteristics for use in differential calorimetry, a simple
procedure was devised based on measurement of the cell heat-loss modulus. Each of
ten Dewar flasks was filled with 250 ml of deionized water at ambient temperature
(23-25°C) and a Beckman thermometer centered in a No. 12 rubber stopper was
placed in the water. After equilibration for 20-30 min, the Dewar was placed in a
heated mineral-oil bath (39—41°C). The temperature of the Dewar contents was
measured at I-min intervals for 30 min. The water was not stirred during the proce-
dure. The heat-loss moduli for the cells were calculated from the heating curve by the
method of Gunn'”.

The effect of stirring and the calorimeter head on the heating curve was deter-
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mined as described above. A single Dewar flask was selected with & = 1.2 x 10~3
min~ . The thermometer was inserted in the head through a port vacated by removal
of a thermistor probe.

The overall heat-loss modulus of the reference cell for the assembled differential
calorimeter was determined by two methods. Method A: The procedure of Swicto-
slawski'® with temperature measurements made over a total time of 4.5 x 10* sec.
Method B: The procedure of Gunn'? as part of a determination of C,.

Bulk solvents thermostated at 25.00 + 0.02°C were pipetted using a specially
designed 250-ml Pyrex pipet with a drain time of 90 sec. A total dispensing time of
100 sec was used for high precision in the volume delivered. The solvent used was
triply distilled water boiled gently before delivery to a closed container and place-
ment in the thermostatic bath. Tke order of solvent dispensing was as follows: the
reference cell, two previously weighed polyethylene bottles, and the reaction cell.
The polyethylene bottles were again weighed to determine the mass of water dispensed
by the pipet. Typical uncertainties in the mass of solvent delivered are approximately
+0.014 g (959, confidence for 6 trials). All masses rcported here are corrected to
vacuum. The total time expired during solvent transfer was approximately 10 min.

Heat capacities of the calorimeter cells were determined by electrical heating
with constant current from a Sargent Coulometric Current Source (Model 1V). The
current was calculated from the IR-drop across a standard resistor determined by a
Leeds and Northrup K-2 potentiometer. Potentials across the resistance heaters
were measured at the banana-jack connectors by the L & N K-2 potentiometer.

Energies were calculated in calories on the basis o7 the conversion factor
4.184 J cal~ . The mechanical counter of the coulometer was u:ed for all time measure-
ments and was calibrated by comparison with the NBS radio time signals from Fort
Collins, Colorado.

The time constant of mixing, t,,, for the Dewar cells was estimated from photo-
metric measurements made with a Pyrex cell matching closely the size and shape of
the Dewar cell set in place of the reaction cell. A beam of blue light 1 cm in diameter
was directed horizontally through the cell with the beam center 1.5 cm from the
longitudinal axis of the cell. The cell contained 250 ml of water with 10 drops of
0.05%, phenolphthalein. The output of a Heath 701A photomultiplier detector
positioned to receive the transmitted light was recorded vs. time on a Sanborn
oscillographic recorder as 0.25 ml of 509, NaOH solution was injected into the
stirred solution. The transmittance of the solution was observed to decrease as an
exponential function of time. The value of ,, was taken as the point along the time
axis when the change in transmittance was 0.632 of the total change.

The theoretical model for the response of the calorimeter bulk temperature,
described above was programmed in WATFIV and executed on an IBM 360-5
digital computer in the Iowa State University Computation Center. A listing of the
program is available on request from the authors. Further details are described in
ref. 11 :
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RESULTS AND DISCUSSION

Heatr-loss moduli

The heat-loss moduli, &, of ten Dewar cells were determined and the values are
in the range 5.6 x 107% to 13.1 x 107* min~!. Two cells matched within experi-
mental error (5.6 + 0.5 x 107* min~') and were used in constructing the differential
calorimeter.

The effect of the lid temperature, lid design, and the nature of bulk stirring
on the measured heat loss modulus was studied with a single Dewar cell having
k = 1.2 x 1073 min™'. Plots of temperature vs. time are shown in Fig. 4. The effect
of a heated lid to change the value of k¥ measured is substantial. The initial slope of
the response curve for T,y = T, + 16°C was a factor of 1.51 greater than that for
Ti.a = T,. This result is consistent with the conclusion of Sunner and Wadso* that
the design and temperature of the calorimeter lid affects the measured value of k.
Their conclusion that the short term (<2 min) dynamic response is controlled by &
is not correct. Qur results described Iater show the short term response is primarily
determined by mixing conditions. Long term (> 2 min) is greatly affected by k.

Data used for the computer simulation of e, vs. 7 for the reference cell in the
assembled calorimeter are given in Table 1 together with the results of calculations
of k according to the methods of Swietslawski and Gunn. The agreement between

<.

300

TEMPERAYURE (DEGC)

26.0

220

- ) 4 X k4 3

o 2600 400 600
TIME (MIN])

Fig. 4. Heat loss modulus of calorimeter dewar. rg = 1.63 cm. O = rubber stopper, Ns = 0, ambient
ccll lid temperature; (J = Teflon stopper, Ns = 0, ambicnt cefi lid temperature; A = Teflon stopper,
Ns = 1760 rev min—1, ambient ceH lid temperature; [l = Teflon stopper, N = 1760 rev min~1, cell
lid heated to thermostat temperature; 7 = Teflon stopper, Ns = 0, cell lid heated to thermostat
temperature. '
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TABLE 1

PARAMETER VALUES FOR OOMPUTER CALCULATIONS

Reference cell of calorimeter

rah = 0.64cm h = L1L6cm

re = 206cm I = 10.8cm

r = 215cm e = 07854 rad

reem = 040cm 7 = 20246rad

Astern = 181 am® Co» = 248.8 cal °C-1 (H-0)
Ax =227Tcm® Cw = 333 cal °Ct

Xs = 035cm vapor volume = 59.5 ml
Bulk solvent

Porameter Water, 25°C

Toluene, 25°C

322 x 104 calcm~! sec—! °C-* (ref. 20)

7n 1.45 x 1073 cal cm~ sec-1 °C-1 (ref. 20) v
o 8937 % 10 3cm®sect 6.42 x 103 cm?® sec™? (ref. 21)
Pr 6.16 7.11
Sc 257 (ref. 22) 257 (ref. 23)
¢ 0998 cal g “C-1 (ref. 21) 0356 cal g °C-! (ref. 29)
Electrical
7» 3.9 x 10-*cal cm-t sect °C-1 An = 1.2 an®
Cs 7x102%cal °C? m = 0I2cm
Zoxe = 1.76 3¢ 10~5 °C sec—1 Ns = 1000 rpm
_ rs = 1.63 an
Hear loss modulus of calorimeter cell
k = 2.80 x 103 min—1 (Method A)
k = 287 x 1073 min—! (Method B)
TABLE 2
THEORETICAL AND EXPERIMENTAL VALUES OF Tm
Tkeoretical Experimental
Ns (rpm) Tm (sec) Ns (7pm) Tw (s€C)
r=155cm r=2I5cm r=15cm
200 3.68 258 252 1.87 250
400 191 134 441 1.19 093
600 131 0952 635 088 0381
800 1.00 0.70 817 09s 0.63
1000 A | 057 1000 0.52 0.66
1200 0.67 0.48 1530 0.50 0.58
‘1400 0.¢0 042 2040 030 039
1600 053 037 .
1800 047 033
2000 043 030
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the two values is excellent considering the differences in the methods employed. Our
values are in the midrange of those reported by Tyrrell'? of 1 x 1073 to 6 x 1073

min~ .

Computer-generated response curves

The primary difficulty in using the mathematical model of the calorimetric
response to electrical heating is that four time constants are required and only z,,
and 7, can be measured experimentally. Values of 7, and 1., must be calculated as
described earlier. Experimental and calculated values of 1, are given in Table 2.
This error probably results from the assumption that the Pai power series which is
used for calculating velocity distribution in a pipe is valid for flow in a closed cylinder.

The theoretical output of the bridge circuit as a function of time is shown in
Fig. 5 for an overall circuit gain of 100. The mathematical model does not give a
completely satisfactory description of the transient regions of the main and anterior
periods. The error is small, however, for the steady-state regions of both periods.
For example, the experimental time constant is 6.3 sec when y, = 492 x 107*°C
sec™!, N, = 430 rpm, and r, = 1.63 cm. The value predicted at 400 rpm is 6.6 sec.
The predicted change in the circuit output, Ae,, measured from start to the steady-

o oo

1
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¥ l‘ iJ
700 800 . 300

Fig 5. Theoretical voltage output of the bridge circuit as a function of time. N; = 400 rev min-1. '
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Fig. 6. Experimental heating curves of the reference cell as a function of rs. Ny = 400 rev min—1,
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Fig 9. Theoretical heating curves of the reference cell as a function of Ny 7z = 1.63 cm; Ny: A =
400 rev min~*, B = 800 rev min~*, C = 1200 rev min~?, D = 1600 rev min~1, E = 2000 rev min—t.
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Fig 10. Theoretical beating curves of the reference cell with toluene as the bulk solvent as a function
of Ns. 7 == 1.63 cm; Niz A = 400 rev min~!, B = 800 rev min-?!, C = 1200 rev min~!, D = 1600
revmin?!, and E = 2000 rev min—%.

state region of the anterior period is 98.44 mV. A value of 98.74 mV was observed
experimentally for a heating ime of 49 sec.

T, > T, during electrical heating and the early portion of the anterior period
before a steady-state temperature is reached. The location of the thermistor relative
to the heater determines whether the thermistor is in a region of excess temperature
(Ty.. > Ty..ve) OF a region of deficient temperature (T,,,, < Ty, .v)- When the ther-
mistor is in a region of excess temperature, overshoot is observed at the point of
heater cut-off, 7. The temperature excess (Ty,,, — Ty, .v) is in the orderof 7m°C
for 7, = 492 x 107*°C sec™!, N, = 200 rpm, and r, = 1.63 cm.

Experimental and theoretical heating curves are given in Figs. 6-9 for r;, =
0.64-1.85 cm. The curves illustrate dramatically that critical damping of a calon-
meter can be achieved by proper choice of r,and N,. The conclusion of some workers*- ¢
that k£ becomes constant after 3 to 30 sec, dependent only on calorimeter design, is not
supported by our results. Certainly C,, influences the response but it does not have
the overwhelming importance commonly thought.

' The effect of changmg solvent was mv&stlgated by substjtutmg toll.ene for
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water. The heating curves are shown in Fig. 10. The thermal conductivity and heat
capacity of toluene are considerably different than those of water causing the extensive
overshoot observed in Fig. 10. The sudden downward plunge of e, after the start
of the heating probably results from discarding the T, term in the derivation. The
error is on the order of 2 m°C. All results shown were corrected throughout this work
for the offset error calcniated at 1 = 0. The complexity of the calorimetric system
precludes an exact derivation including the R, term.

LIST OF SYMBOLS

ab L K, r,Z, a B, E, ¥, 0, o, % & coefficients

A, surface area of electrical heater (cm?)

Aem area of mounting tubes in contact with bulk solution (cm?)

A, surface area of calorimeter wall in contact with bulk solution (cm?)

c, volume heat capacity of bulk solution (cal cm™3 “C™1)

c, mass heat capacity of bulk solution (cal g=*! °C™!)

C, heat capacity of bulk solution (cal °C™?)

Cco mass heat capacity of copper metal (cal g~! °C™?)

Cy heat capacity of electrical heater (cal °C™*)

e, mass heat capacity of resistive element (cal g~ °C~ ‘)

Ca heat capacity of calorimeter wall (cal °C™")

7o bulk solution heating rate (°C sec™!)

Tokg heating rate of bulk solution by heat transferred through calorimeter wall
from environment (°C sec™!)

Vaer heating rate of bulk solution by stirring (°C sec™?)

Yen heating rate of bulk solution by thermistor (°C sec™ ')

hy, heat transfer coefficient of cylindrically shaped electrical heater (cal cm™?
sec"’ oC— 1)

Fry heat transfer coefficient of heater stem (cal cm™2 sec™! °C™}1)

hyem heat transfer coefficient of heater, thermistor, mounting tubes, etc. (cal

cm-—z sec—l oc—l)
h, heat transfer coefficient of calorimeter (cal cm™% sec™! “C™?%)
k heat loss modulus
1, height of stirrer disc above the bottom of the calorimeter (cm)
I, depth of immersion of stirrer disc in bulk solution (cm)
i depth of bulk solution (cm)

. thermal conductivity of bulk solution (cal cm™! sec™! °C™?})

y thermal conductivity of copper metal (cal cm™! sec™! °C™?!)

Je thermal conductivity of epoxy (cal cm™?! sec™! °C™!)

Y thermal conductivity of electrical heater (cal cm™! sec™! °C™1)
Ay thermal conductivity of metal film resistor (cal cm™! sec™! °C™1)
me, mass of copper sheath of electrical heater resistive element (g)

m, mass of electrical heater resistive element (g)



kinematic viscosity of bulk solution (cm? sec™!)

Vo

N, stirrer rotational speed (rev min—*)

w, angular velocity of stirrer (rad sec™!)

P, electrical energy supplied for heating per unit time (cal sec™ ')

Oy heat supplied electrically to the calorimeter (cal)

r. radius of calorimeter cell (cm)

ry radius of electrical heater (cm)

r, radius of stirring disc (cm)

| A% radins of stirrer shaft (cm)

Fitem average radius of mounting tubes (cm)

s Laplacian operator

a, dimensionless shielding parameter

t time (sec)

T, temperature of bulk solution (°C)

To1 temperature of bulk solution at the interface of the bulk solution and
electrical heater boundary layer (°C)
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